3.95 \(\int \frac{x^3}{\sqrt{a+b x+c x^2} (d-f x^2)} \, dx\)

Optimal. Leaf size=287 \[ \frac{b \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{2 c^{3/2} f}-\frac{d \tanh ^{-1}\left (\frac{-2 a \sqrt{f}+x \left (2 c \sqrt{d}-b \sqrt{f}\right )+b \sqrt{d}}{2 \sqrt{a+b x+c x^2} \sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d}}\right )}{2 f^{3/2} \sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d}}+\frac{d \tanh ^{-1}\left (\frac{2 a \sqrt{f}+x \left (b \sqrt{f}+2 c \sqrt{d}\right )+b \sqrt{d}}{2 \sqrt{a+b x+c x^2} \sqrt{a f+b \sqrt{d} \sqrt{f}+c d}}\right )}{2 f^{3/2} \sqrt{a f+b \sqrt{d} \sqrt{f}+c d}}-\frac{\sqrt{a+b x+c x^2}}{c f} \]

[Out]

-(Sqrt[a + b*x + c*x^2]/(c*f)) + (b*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(2*c^(3/2)*f) - (d
*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a
 + b*x + c*x^2])])/(2*f^(3/2)*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]) + (d*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*
c*Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*f^(3/2)*Sqrt[c*d
+ b*Sqrt[d]*Sqrt[f] + a*f])

________________________________________________________________________________________

Rubi [A]  time = 0.632543, antiderivative size = 287, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 6, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.214, Rules used = {6725, 640, 621, 206, 1033, 724} \[ \frac{b \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{2 c^{3/2} f}-\frac{d \tanh ^{-1}\left (\frac{-2 a \sqrt{f}+x \left (2 c \sqrt{d}-b \sqrt{f}\right )+b \sqrt{d}}{2 \sqrt{a+b x+c x^2} \sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d}}\right )}{2 f^{3/2} \sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d}}+\frac{d \tanh ^{-1}\left (\frac{2 a \sqrt{f}+x \left (b \sqrt{f}+2 c \sqrt{d}\right )+b \sqrt{d}}{2 \sqrt{a+b x+c x^2} \sqrt{a f+b \sqrt{d} \sqrt{f}+c d}}\right )}{2 f^{3/2} \sqrt{a f+b \sqrt{d} \sqrt{f}+c d}}-\frac{\sqrt{a+b x+c x^2}}{c f} \]

Antiderivative was successfully verified.

[In]

Int[x^3/(Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]

[Out]

-(Sqrt[a + b*x + c*x^2]/(c*f)) + (b*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/(2*c^(3/2)*f) - (d
*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a
 + b*x + c*x^2])])/(2*f^(3/2)*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]) + (d*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*
c*Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*f^(3/2)*Sqrt[c*d
+ b*Sqrt[d]*Sqrt[f] + a*f])

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 1033

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[-(a*c), 2]}, Dist[h/2 + (c*g)/(2*q), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - (c*g)
/(2*q), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[-(a*c)]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^3}{\sqrt{a+b x+c x^2} \left (d-f x^2\right )} \, dx &=\int \left (-\frac{x}{f \sqrt{a+b x+c x^2}}+\frac{d x}{f \sqrt{a+b x+c x^2} \left (d-f x^2\right )}\right ) \, dx\\ &=-\frac{\int \frac{x}{\sqrt{a+b x+c x^2}} \, dx}{f}+\frac{d \int \frac{x}{\sqrt{a+b x+c x^2} \left (d-f x^2\right )} \, dx}{f}\\ &=-\frac{\sqrt{a+b x+c x^2}}{c f}+\frac{b \int \frac{1}{\sqrt{a+b x+c x^2}} \, dx}{2 c f}+\frac{d \int \frac{1}{\left (-\sqrt{d} \sqrt{f}-f x\right ) \sqrt{a+b x+c x^2}} \, dx}{2 f}+\frac{d \int \frac{1}{\left (\sqrt{d} \sqrt{f}-f x\right ) \sqrt{a+b x+c x^2}} \, dx}{2 f}\\ &=-\frac{\sqrt{a+b x+c x^2}}{c f}+\frac{b \operatorname{Subst}\left (\int \frac{1}{4 c-x^2} \, dx,x,\frac{b+2 c x}{\sqrt{a+b x+c x^2}}\right )}{c f}-\frac{d \operatorname{Subst}\left (\int \frac{1}{4 c d f-4 b \sqrt{d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac{b \sqrt{d} \sqrt{f}-2 a f-\left (-2 c \sqrt{d} \sqrt{f}+b f\right ) x}{\sqrt{a+b x+c x^2}}\right )}{f}-\frac{d \operatorname{Subst}\left (\int \frac{1}{4 c d f+4 b \sqrt{d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac{-b \sqrt{d} \sqrt{f}-2 a f-\left (2 c \sqrt{d} \sqrt{f}+b f\right ) x}{\sqrt{a+b x+c x^2}}\right )}{f}\\ &=-\frac{\sqrt{a+b x+c x^2}}{c f}+\frac{b \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+b x+c x^2}}\right )}{2 c^{3/2} f}-\frac{d \tanh ^{-1}\left (\frac{b \sqrt{d}-2 a \sqrt{f}+\left (2 c \sqrt{d}-b \sqrt{f}\right ) x}{2 \sqrt{c d-b \sqrt{d} \sqrt{f}+a f} \sqrt{a+b x+c x^2}}\right )}{2 f^{3/2} \sqrt{c d-b \sqrt{d} \sqrt{f}+a f}}+\frac{d \tanh ^{-1}\left (\frac{b \sqrt{d}+2 a \sqrt{f}+\left (2 c \sqrt{d}+b \sqrt{f}\right ) x}{2 \sqrt{c d+b \sqrt{d} \sqrt{f}+a f} \sqrt{a+b x+c x^2}}\right )}{2 f^{3/2} \sqrt{c d+b \sqrt{d} \sqrt{f}+a f}}\\ \end{align*}

Mathematica [A]  time = 1.20162, size = 325, normalized size = 1.13 \[ \frac{\frac{b \sqrt{f} \tanh ^{-1}\left (\frac{b+2 c x}{2 \sqrt{c} \sqrt{a+x (b+c x)}}\right )}{c^{3/2}}+\frac{d \tanh ^{-1}\left (\frac{2 a \sqrt{f}+b \sqrt{d}+b \sqrt{f} x+2 c \sqrt{d} x}{2 \sqrt{a+x (b+c x)} \sqrt{a f+b \sqrt{d} \sqrt{f}+c d}}\right )}{\sqrt{a f+b \sqrt{d} \sqrt{f}+c d}}-\frac{d \tanh ^{-1}\left (\frac{-2 a \sqrt{f}+b \left (\sqrt{d}-\sqrt{f} x\right )+2 c \sqrt{d} x}{2 \sqrt{a+x (b+c x)} \sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d}}\right )}{\sqrt{a f+b \left (-\sqrt{d}\right ) \sqrt{f}+c d}}-\frac{2 \sqrt{f} x^2}{\sqrt{a+x (b+c x)}}-\frac{2 b \sqrt{f} x}{c \sqrt{a+x (b+c x)}}-\frac{2 a \sqrt{f}}{c \sqrt{a+x (b+c x)}}}{2 f^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/(Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]

[Out]

((-2*a*Sqrt[f])/(c*Sqrt[a + x*(b + c*x)]) - (2*b*Sqrt[f]*x)/(c*Sqrt[a + x*(b + c*x)]) - (2*Sqrt[f]*x^2)/Sqrt[a
 + x*(b + c*x)] + (b*Sqrt[f]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x*(b + c*x)])])/c^(3/2) + (d*ArcTanh[(b*S
qrt[d] + 2*a*Sqrt[f] + 2*c*Sqrt[d]*x + b*Sqrt[f]*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + x*(b + c*x
)])])/Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f] - (d*ArcTanh[(-2*a*Sqrt[f] + 2*c*Sqrt[d]*x + b*(Sqrt[d] - Sqrt[f]*x)
)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + x*(b + c*x)])])/Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f])/(2*f^(3
/2))

________________________________________________________________________________________

Maple [A]  time = 0.265, size = 410, normalized size = 1.4 \begin{align*} -{\frac{1}{cf}\sqrt{c{x}^{2}+bx+a}}+{\frac{b}{2\,f}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx+a} \right ){c}^{-{\frac{3}{2}}}}+{\frac{d}{2\,{f}^{2}}\ln \left ({ \left ( 2\,{\frac{-b\sqrt{df}+af+cd}{f}}+{\frac{1}{f} \left ( -2\,c\sqrt{df}+bf \right ) \left ( x+{\frac{1}{f}\sqrt{df}} \right ) }+2\,\sqrt{{\frac{-b\sqrt{df}+af+cd}{f}}}\sqrt{ \left ( x+{\frac{\sqrt{df}}{f}} \right ) ^{2}c+{\frac{-2\,c\sqrt{df}+bf}{f} \left ( x+{\frac{\sqrt{df}}{f}} \right ) }+{\frac{-b\sqrt{df}+af+cd}{f}}} \right ) \left ( x+{\frac{1}{f}\sqrt{df}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{1}{f} \left ( -b\sqrt{df}+af+cd \right ) }}}}}+{\frac{d}{2\,{f}^{2}}\ln \left ({ \left ( 2\,{\frac{b\sqrt{df}+af+cd}{f}}+{\frac{1}{f} \left ( 2\,c\sqrt{df}+bf \right ) \left ( x-{\frac{1}{f}\sqrt{df}} \right ) }+2\,\sqrt{{\frac{b\sqrt{df}+af+cd}{f}}}\sqrt{ \left ( x-{\frac{\sqrt{df}}{f}} \right ) ^{2}c+{\frac{2\,c\sqrt{df}+bf}{f} \left ( x-{\frac{\sqrt{df}}{f}} \right ) }+{\frac{b\sqrt{df}+af+cd}{f}}} \right ) \left ( x-{\frac{1}{f}\sqrt{df}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{{\frac{1}{f} \left ( b\sqrt{df}+af+cd \right ) }}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x)

[Out]

-(c*x^2+b*x+a)^(1/2)/c/f+1/2/f*b/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))+1/2/f^2*d/(1/f*(-b*(d*f)^
(1/2)+a*f+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+a*f+c*d)+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b
*(d*f)^(1/2)+a*f+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)
^(1/2)+a*f+c*d))^(1/2))/(x+(d*f)^(1/2)/f))+1/2/f^2*d/((b*(d*f)^(1/2)+a*f+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+a*
f+c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+a*f+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+
(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+a*f+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{x^{3}}{- d \sqrt{a + b x + c x^{2}} + f x^{2} \sqrt{a + b x + c x^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(c*x**2+b*x+a)**(1/2)/(-f*x**2+d),x)

[Out]

-Integral(x**3/(-d*sqrt(a + b*x + c*x**2) + f*x**2*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError